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Classic Receiver Function Papers

Papers that describe the basic functionality of teleseismic receiver function analysis

« Langston (1979) — Deconvolution procedure - 608 citations in Web of Science (1/2013)
« Owens et al. (1984) — RF stacking - 230 citations

« Ammon et al. (1990) — Non-uniqueness of RFs - 285 citations

« Ammon (1991) — Importance of absolute amplitudes - 265 citations

« Ligorria and Ammon (1999) — lterative deconvolution — 207 citations
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Overview of recent receiver function papers focused on the Middle East
(with emphasis on Arabia and Anatolia)

« Sandvol et al. (1998a) — RFs, Arabia

« Sandvol et al. (1998b) — RFs, Middle East and North Africa

 Mangino and Priestley (1998) — RFs, southern Caspian

« Julia et al. (2000) - Joint inversion of RFs and SWs, method

« Julia et al. (2003) — Joint inversion of RFs and SWs, western Arabia

« Zoretal. (2003) — RFs, eastern Turkey

 Rodgers et al. (2003) — RFs, Jordan

 Moshen et al. (2005) — RFs, Dead Sea Fault

« Al-Damegh et al. (2005) — RFs, Arabia

« TkalCic¢ et al. (2006) — Joint inversion of RFs and SWs, Arabia

« Paul et al. (2006) - RFs, stacking, gravity modeling, Zagros Mts

« Angus et al. (2006) — S-wave receiver functions, eastern Turkey

« Pasyanos et al. (2007) — Joint inversion of RFs and SWs, travel times, Kuwait

« GOk et al. (2007) — Joint inversion of RFs and SWs, eastern Turkey

« GOk et al. (2007) — Joint inversion of RFs and SWs, Iraq

« Hansen et al. (2007) — S-wave receiver functions, Arabia

* Al-Hashmi (2011) — Joint inversion of RFs and SWs, Oman

GOk et al. (2011) — Joint inversion of RFs and SWs, eastern Turkey and Caucasus
« GOk (in preparation) — Joint inversion of RFs and SWs, Mesopotamian Foredeep



Receiver functions for the Middle East and North Africa
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Figure 14. A map showing the grid search results of crustal thickness and prior, if available, estimates of crustal
thickness (shown in parentheses), and jackknife error estimates in the Middle East and Africa.



Receiver functions for the Arabian Peninsula
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Studying stations in close proximity can
yield insights on tectonic structure
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Figure 4. A comparison of our shear wave velocity models with the model of Mooney et al. [1985]. The shaded/white boundary
marks the Moho boundary derived from the 1978 refraction experiment (Figure 1). Also shown are the major crustal P wave velocity
anomalies (dashed lines). For the most part we observe no evidence of these boundaries; however, most of these are very subtle
features ( <0.15 km/s P wave velocity ). Only beneath station RAYN do we observe upper-crustal and mid-crustal velocity
discontinuities. These features are also seen on the refraction model and pond to sub ial velocity (~0.3 kn’s).




Receiver functions for the southern Caspian

Turkmenia

Kara Kum

Figure 1. Topographic map of the south Caspian basin and surrounding region. Elevation varies from ~ 30 m below sea level in the Caspian
to over 2 km above sea level in the adjacent mountains. The contour interval is 1000 m; solid triangles denote the Caspian Seismograph Netwc
stations used in this study. In Turkmenia the stations used are located at Krasnovodsk (KRF), Nebit Dag (NBD) and Kizyl Atrek (KAT). The
only station in Azerbaijan used in this study is located at Lenkoran (LNK). The IRIS station Alibek (ABKT), Turkmenia, is shown as a solid
square. The West Turkmenian depression is denoted by the 45 km Moho depth contour from Rezanov & Chamo (1969).

RFs integrated with DSS results
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62°

EN
(=23
2
o
o
°
°d
B
S
wn
@
°

Atrek-Sagyz

4201

40%

38°

36°

L e
B AR SRV

R
30 —117
A Y %3
. + = z I =
‘ " 17 7 4 '
45-’.’/\ =l N 72 7y == 25 v v+ g5
‘/’(1// S N §/\\\\ul/\\\\l " \\\\JI//§ =Tt
Ly D3 A R a2 L L AR SN AP
601 N = S U \ U= S U Z AN |
17 : 11 60
16 15 13 1 10 8 S 43 1

Basaltic DE] Upper-Mantle

Sediments Granitic

Figure 3. Cross-section of the crust and uppermost mantle (lower panel) beneath the region denoted by the box in the upper panel. Three
principal crustal layers are characterized by their P-wave velocities: sediment and consolidated sediment V < 4.8 km s—1), ‘granitic’ (V_ between
4.8 and 6.4 km s—1), ‘basaltic’ (V_between 6.4 and 7.4 km s-1) and upper mantle (V = 8.0 km s—1). Control p%ints numbered 1-17 corréspond to
the following DSS (open arrows) and receiver function results (solid arrows): (1) Dushak-NE (Yegorkin & Matushkin 1970), (2) IRIS station
ABKT, (3) ATS (Altyyev et al. 1988), (4) Kopet Dag-Aral Sea (Yegorkin & Matushkin 1970), (5) Okarem-Darvaz (Kurbanov & Rzhanitsyn
1982), (6) Station KAT, (7) Atrek-Sagyz (Rezanov & Chamo 1969), (8) Okarem-Darvaz (Kurbanov & Rzhanitsyn 1982), (9) Ogurtchin-
Sarykamysh (Shikalibeily & Grigoriants 1980), [(10) 9, (11) 6, (12) 11, (13) 1, A-B (Aksenovich et al. 1962; Gal'perin et al., 1962)], (14) Station
LNK, [(15) A4, (16) A3 (Shekinskii et al. 1967)] and (17) Black Sea-Caspian Sea (Khalilov et al. 1987).



Joint Inversion of Receiver Functions and Surface Waves

Julia et al. (2000) GJI
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Seeks to deal with the non-uniqueness of RFs
with the inclusion of surface wave dispersion

Comparison to refraction results
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Figure 13. Comparison between the preferred model (left) inferred from the joint inversion expressed in terms of P-wave velocities, and the cross-

section (right) interpreted from the refraction profile of Mooney et al. (1985). Note that the vertical scale in the resulting model has been shifted to
match that in the cross-section.



Western Arabia

The Arabian Shield
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Fig. 1. Terrane map of the Arabian Peninsula showing the location
of nine temporary stations in the Saudi Arabian Portable Broadband
Deployment (triangles) superimposed on regional geologic terranes
and suture zones defined idohnson (2000) Also shown are the
locations of Cenozoic surface volcanics. Harrat al Kishb, the site of
thermobarometry information is labeled with a “K".

Back to Saudi PASSCAL

Julia et al. (2003) Tectonophysics
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Eastern Turkey

BLACK SEA

A ETSE Stations
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Figure 1. Map showing the 29 three-component PASS
broadband stations (triangles) used in the Eastern T
Seismic Experiment (ETSE). Filled circles indicate Quat
nary volcanoes and the gray shaded area shows Ne
volcanics. Arrows indicate the direction of the plate anc
motions. BS, NAFZ, and EAFZ are the Bitlis-Zagros sutt
zone, North Anatolian fault zone, and East Anatolian
zone, respectively.
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Figure 3. (a) On the left is the estimated velocity model
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functions. (b) Many layered linearized inversion results
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Figure 4. Maps showing (a) the Moho depth variation in
km (contour interval is 1 km) and (b) the average crustal
shear velocity in km/s (contour interval is 0.04 km/s) for
each station. Black squares indicate stations which may
have a low velocity layer. Red lines indicate the three plate
boundaries.



Jordan

[ Rodgers et al. (2003) SRL
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Dead Sea Fault
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Arabian Peninsula

Al-Damegh et al. (2005) EPSL

M Iran

s HA ’
BAFFS pavn N JrSy,
~~~~~ O HALM . oA
Orrnna  SaudiArabia_—Oma
20 e AN

' HITJ O

A KACST broadband
stations

0O Experiment
broadband stations

7 Oman short period
3 comp stations

O Jordan Intermediate
band stations

7 FDSN stations

Fig. 2. Map showing the seismic stations used in this study. In addition, the map shows stations in the region for which receiver function results
were discussed in the text (squares, stars, and downward triangles). The inset shows stations along or close to the Gulf of Agaba. West
c

—|FRSS
LTHS
s0DA

~{TAIF

L

NAMS

~{ouNs
TATS
AANI
HALM
RAYN
AIVD

Time (s)

b Coastal Plain

More of the Arabian Peninsula RedSea| Arabian Shield

g,
TE 1
i’é [ ‘;\/Aﬁz\\ig‘k‘ﬁﬂﬁ’%k\' i
w9 . V. A A VN ——
DS 020 ns =3 z o @
O TOLLSZ 2 Z 3 > g 0
< < < < =
£59%a%3 =& T '3 © B
10+ B
ES
20+ B
I
€
<
£ 30 B
Q
@
8 I
an
a0 ﬁq I I I
50
i) 200 400 1000 1200

600
Distance (km)

Fig. 11. Map and cross-sections showing Moho depth at stations along a profile from the Red Sea to the east coast of Arabia. (a) Map showing
the location of the profile. (b) The cross-section with vertical exaggeration. (c) Stacked radial receiver functions for distances Bfe8the
same stations shown in the cross-section (b).



Arabia
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Arabia - continued
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Arabia - continued
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Zagros Mts.

WINT Zagros fold-and-trrust belt (ZFTB) R Ophoiec outcrops
R Sananday-Svjan metamorptic zone (SSZ) . . Central doman
R Voicanic and intrusie rocks (UDMA) S Central Iranian microcontinent (CIMC)

Figure 1. Location map of the seismological network. The black box on
the geological map of Iran in inset shows the location of the regional map.
Stations used in this study are plotted as black triangles. The dash-and-dot
line is the N42 profile used in cross sections of Figs 2 and 4. The main faults
are shown as thick black lines. Geological map modified from the structural
map of NGDIR (National Geoscience Database of Iran, http://www.ngdir.ir).
MZT: Main Zagros thrust; KZF: Kazerun fault; MZT: Main Zagros thrust

and DF: Deshir fault.
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Figure 4. Migrated depth section computed from radial RFs along the N42 profile. The blue-to-red colour map displays the average amplitude ratioRftth®
converted phase to the primar for all rays crossing the bin. Top: average elevations along the N42 profile; inverted triangles show heights of seismological
stations. Middle: raw migrated depth section. Empty bins (without a single ray) are plotted in light grey. The dotted line is the Moho depth profitefirdm
the smoothed depth section. Bottom: migrated depth section after filtering and smoothing.
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a crustal model with an Andean-type thickened margin beneath the SSZ. Same legend as Fig. 6.



Eastern Turkey — S-wave receiver functions
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igure 2. M the29th AL the ETSE array Asthenosphere
GNI (GSN-IRIS/USGS network) and MALT (GEOFON network) (trangles) and Holocene volcanoes (circles). Abbreviations: NAF, North Anatolian Fault;

EAF, East Anatolian Fault; BZS, Bitis-Zagros Suture Zone. Approximate location of the major tectonic units of eastern Turkey are shown (modified fro
Keskin 2005): () Rhodope-Pontide fragment, (1) Northwest Iranian fragment, () Eastern Anatolian Accretionary complex (EAAC), (V) Bitls-P oturge 100Am
Massif and (V) Arabian foreland.
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Kuwait

Comparison of the KUW1 Model
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Figure 9. The KUW1 velocity model and other nearby velocity models. The KUW1 model is shown in green. Other models are as follows: CRUST20 in
black, AP model in cyan, WENA model in blue, sediment model in magenta, and the Kuwait model (from CRUSTS.1) in red. Arrows to the right show the

sedimentary column from Bou-Rabee (2000).
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Figure 10. Traveltimes of Pn (triangles), Pg (inverted triangles), Sn (dia-
monds), Sg (squares) and Lg (circles) phases for local events and regional
events from the Zagros Mts recorded at station KBD. Traveltime fits to the
data from model KUW1 are shown in solid and dashed lines.
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Figure 11. P-wave velocity results for Kuwait from local seismicity. The
blue line is the KUW1 model and the green line is the model originally
used to locate events in the region. Dashed lines are outputs of VELEST
program using various input models. Based on the range of output model,
the velocities between 8 and 20 km are resolvable. The purple line is the
final model from the VELEST inversion, which compares favourably to the
KUW1 model.
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Eastern Turkey — Joint Inversion
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Figure 4. A comparison between the RF-only inversion and the joint RF-SW inversion. (a) receiver functions (a is Gaussiaiter), (b) dispersion curves and
(c) velocity models. The RF-only model (dotted lines) was unable tét the SWs, but the joint technique was able fit them without any degradation to the RF
fit.
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Figure 10. The schematic diagram of N-S trending prdile showing the proposed lithospheric structure in eastern Turkey. As indicated by the velocity and
anisotropy in our study, there is no indication ofl ithospheric mantle in the plateau.



Iraq — Joint Inversion

Figure 1. Base map of the study region including the locations of seismic stations BHD and MSL (triangles). Adjacent stations (RTB, MRDN, KBD, RUW,
QURS and HILS, circles) have reported crustal structures. Tectonic provinces are indicated (black lines). Major features in Iraq are identified andainclude
the Khleisha Uplift (KU), Anah Graben (AG), Rutbah Uplift (RU) and Main Zagros Thrust (MZT), taken from Pollastro et al. (1997a,b). Sedimentary thickness
across the region is plotted as yellow contours (Bassiet al. 2000). Summary of crustal and sedimentary thickness (ct and st, respectively) at stations BHD and
MSL. Note that the crystalline crustal thickness (ct-st) for stations along the northeastern Arabian Platform (KBD, BHD, MSL and MRDN) is very consisent
at about 36 km. Also shown are results for nearby stations referred to in the text.
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Figure 6. Comparison of the shear velocity profiles at station BHD (grey)
and MSL (black). Arrows indicate the estimated Moho depths for each
profile.



Arabia — S-wave receiver functions
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Oman - Joint Inversion
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Figure 4. (a) The inversion results for six stations. The black line is the data and reds are synthetic. Two starting models along with various influence paramete
(p= 0.3, 0.5 and 0.7) and smoothness (0.6 and 0.7) used to obtain the final output. The sensitivity of the inversion is mostly observed at noisier statigns e.
BSY and HOQ. ( ¥) indicates broad-band stations. (b) The inversion results for seven stations. The black line is the data and reds are synthetic. Two starting
models along with various influence parametenp & 0.3, 0.5 and 0.7) and smoothness (0.6 and 0.7) used to obtain the final output.
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Eastern Turkey and Caucasus — Joint Inversion
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Figure 7. (a) An example event showing the propagation efficiencies Sf and Lg. (b) Sn propagation
efficiency tomography. Red is blockedn, and blue is efficiently propagatingn. The shaded area is the
low-velocity anomaly at 85 km (Figure 6).



Mesopotamian Foredeep — Joint Inversion

Figure courtesy of
Rengin Goék

Revisiting Mesopotamian Foredeep with
stations in Kuwait —

Thicker sediment + Same crystalline crust
= Thicker overall crustal thickness ) 2 ) 4 6 8
Sediment thickness (Laske and Masters, 1997)




Conclusions

Teleseismic receiver functions are a well-established method for recovering earth structure.
Receiver function methods are becoming more sophisticated with time.

Much improvement is a result of access to more datasets.

Analysis is becoming more “broadband”.

Methods are able to image both shallower structure and deeper structure.

Some methods also seek to recover (usually, mantle) anisotropy.

The joint inversion of RFs and SWs has become a standard seismological technique.

Many current studies seek to fit additional datasets like travel times and attenuation/blockage.

Results are being integrated across wider regions for tectonic interpretation.



