

- 1. Moment-tensor analysis using global data
- 2. The Harvard CMT Catalog
- 3. Using calibration information in waveform analysis
- 4. Quality control using noise
- 5. Finding interesting things in the noise

Moment-tensor analysis by waveform fitting

(Observed seismogram)/(Instrument response) x Filter = Observed waveform (Synthetic displacement seismogram) x Filter = Model waveform

Model waveform depends on:

Earthquake parameters
Earth structure

If the Earth structure and the earthquake location are known, the Model waveform depends only on the six elements of the moment tensor,

$$M_{xx}$$
, M_{yy} , M_{zz} , M_{xy} , M_{xz} , and M_{yz}

Minimize the difference [Observed waveform - Model waveform]² with respect to the moment tensor elements.

- 2. The Harvard CMT Catalog
- 3. Using calibration information in waveform analysis
- 4. Quality control using noise
- 5. Finding interesting things in the noise

The Harvard CMT Catalog

The CMT catalog contains about 21,000 centroid-moment tensor (CMT) solutions for earthquakes since 1976.

The CMT catalog is nearly complete for earthquakes with M=5.5 and larger.

The CMT catalog and additional information can be accessed from http://www.seismology.harvard.edu

If you want to receive 'quick CMTs', email eq@seismology.harvard.edu

Cumulative moment release since 1976

- 3. Using calibration information in waveform analysis
- 4. Quality control using noise
- 5. Finding interesting things in the noise

1976 Friuli earthquake, waveform fits MAIO Dist. E-W 35.7° 89.5° Azim. ALQ Vert. Dist. 82.6° Azim. 314.0° E-W 82.6° ALQ Dist. Azim. 314.0° MAT Vert. 83.8° Dist. 41.6° Azim. MAT N-S Dist. 83.8° Azim. 41.6° KIP N-S ∞ Dist. 112.1° Azim. 351.2°

20 30 minutes 40

10

Ekstrom and Nettles, 1997

- 4. Quality control using noise
- 5. Finding interesting things in the noise

5. Finding interesting things in the noise

Surface-wave dispersion

Seismic surface waves are *dispersive*, $c = c(\omega)$, where c is the velocity, $\omega = \frac{2\pi}{T}$ and T is the period of the wave. Travel time τ is therefore dependent on frequency, $\tau(\omega)$. For the travel time from point (θ_A, φ_A) to point (θ_B, φ_B) we write,

$$\tau(\omega) = \int_{A}^{B} \frac{ds}{c(\theta,\varphi;\omega)}$$

with velocity depending on position, $c(\theta, \varphi)$.

Web pages for earthquake locations and QC

www.seismology.harvard.edu/~ekstrom/Projects/RTDH.html

www.seismology.harvard.edu/~ekstrom/Projects/WQC.html